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Phase transitions in random networks: Simple analytic determination of critical points
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The standard method for determining the critical points in random networks~such as Boolean nets! is based
on the Derrida approximation. This method leads to the critical points based on the so-calledannealedap-
proximation. In this paper, we present a very simple annealed approximation based on the study of damage
spreading when single elements are modified. Several examples are analyzed.@S1063-651X~97!08401-8#

PACS number~s!: 05.40.1j
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Complexity seem to appear, very often, close to criti
points @1,2#. At such points, several characteristic featu
such as fractal structures, 1/f noise, and optimum informa
tion transfer spontaneously emerge. In this context, the
istence of universal behavior close to critical points justifi
the use of very simple, generic models. At the critical bou
ary, important features of large-scale phenomena are rou
insensitive to the particular details of the models and
shared by very~apparently! different systems@3#.

A theoretical approach to a wide class of complex s
tems was provided by the introduction of random Boole
networks ~RBN’s!, also called Kauffman nets@4–8#. First
introduced by Kauffman, a set ofN binary elements
S(t)5„S1(t), . . . ,SN(t)…, with

Si~ t !PS[$0,1%

( i51, . . . ,N), is updated by means of the the dynamic eq
tions

Si~ t11!5L i„Si1~ t !,Si2~ t !, . . . ,SiK~ t !…. ~1!

Such dynamical systems share several properties with
so-called cellular automata models@9#, but here randomnes
is introduced at several levels. Each automaton is rando
connected with exactlyK others that send inputs to it. Her
L i is a Boolean function also randomly choosen from a
FK of all the Boolean functions with connectivityK. An
additional source of randomness is introduced through
random choice of the initial conditionS(0)[$Si(0)%, taken
from the setC(N) of BooleanN strings. In spite of these
random choices, RBNs exhibit a critical transition at a giv
connectivityKc52. ForK,Kc , a frozen phaseis observed
and forK.Kc a chaotic phaseappears@7,8#. At the critical
point, a small number of attractors@'O(AN)# is observed,
which show high homeostatic stability~i.e., high stability
against minimal perturbations in single elements or Bool
functions! and low reachability among different attracto
@7,8#. These properties are clearly observed in some com
systems as the genome@5,6,10#.

This critical point was first estimated through numeric
simulations@5,6# and later analytically obtained@11,12# by
means of the so-called Derrida annealed approximation
551063-651X/97/55~1!/257~4!/$10.00
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~DAA !. Roughly, DAA considers two random initial con
figurations $Si

(1)(t)%,$Si
(2)(t)%PC(N), which have a given

initial ~normalized! overlap

a12~ t !5
1

N(
i51

N

Q„Si
~1!~ t !2Si

~2!~ t !… ~2!

@with Q(z)51 if z50 and zero otherwise#. Then, using Eq.
~1!, we update the system once. The new overlapa12(t11)
is then computed. Then a new set of connections and B
ean functions are again chosen at random~i.e., the dynamics
is annealed! and we follow the dynamics of the overlap i
time. In such a way, each time step each unit receives exa
the same number of inputs, though the neighborhoods
specific interactions are modified.

It can be shown@10,11# that it evolves following the one-
dimensional nonlinear map

a12~ t11!5 1
2 @11a12

K ~ t !#. ~3!

If the normalized Hamming distanceDt[12a12(t) is used,
the fixed pointD*50 becomes unstable atKc52. This
method has been successfuly used in generalization
RBNs @10#. It can be extended to more complex situatio
~see below! and, after some tedious algebraic manipulatio
the critical points are obtained.

In this paper, a much more simple analytic procedure
calculating critical points in random networks will be intro
duced. It is based on a different view of how pertubatio
propagate, starting from a change in the state of a gi
element. We study the set of outputs starting from suc
unit and, using an annealed approximation, we follow
propagation of changes through the network.

To be more specific, let us consider the following ca
The standard RBN is used, but involving a distribution
connectionsf (Ki) (Ki51,2, . . . ,Km), i.e.,

(
Ki51

Km

f ~Ki !51,

and so a mean connectivity will be
257 © 1997 The American Physical Society
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^K&5 (
Ki51

Km

Ki f ~Ki !.

Additionally, a biasp in the sampling of Boolean function
will be used, that is to say the probability

p[P@L i„Si1~ t !,Si2~ t !, . . . ,SiK~ t !…51#.

Now the underlying dynamical system has to be gene
ized to

Si~ t11!5L i„Si1~ t !,Si2~ t !, . . . ,SiKi
~ t !… ~4!

~i.e., eachSi receivesKiP$1,2,. . . ,Km% inputs! and the
Boolean functionsL i are randomly chosen from the set

S~Km ,p,S!5 ø
Ki51

Km
FKi ,p~N,S!.

Here KmPN is the maximum connectivity. Following th
DAA, it can be shown@10# that the equation for the overla
evolution is now a more complicated one

a12~ t11!52p~12p!F11 (
Ki51

Km

f ~Ki !a12
Ki~ t !G . ~5!

Now the critical curve on the parameter space (p,^K&) is

^K&5G~p!5
1

2p~12p!
. ~6!

For ^K&.G(p) a chaotic phase is reached and a frozen
otherwise. Forp51/2 it reduces to the standard RBN pro
lem.

This result can be obtained in a different way. We co
sider an annealed network with input connectivity^K& i . Ob-
viously, the output connectivitŷK&o will be the same~so we
have ^K&o5^K& i5^K&). Now let us build up a tree repre
sentation of our annealed dynamics. We start from a sin
unit Si(t)PS, which sendŝK& outputsto other units, which
in turn send̂ K& outputs to other units. Here each tree lev
will correspond to the network states at different time ste
~Fig. 1!. This tree give us a picture of the possible pa
followed by a change inSi . These paths are shown by a
rows reaching a set of units$Si

1 ,Si
2 , . . . ,Si

Ki%. From the
point of view of graph theory, we are constructing a Cay
tree ~i.e., a Bethe lattice! with coordination number
z5^K&.

Intuitively, we know that in the frozen phase such
change does not propagate through the network~in other
words, damage does not spread through the system!. At the
chaotic phase, a change in a single unit can generate an
lanche of changes through all the net. Let us consider a g
tree and now let us consider exactly the same tree, but w
single change inSi at t ~i.e., a nonnormalizedD51 Ham-
ming distance!.

Two possible changes can be introduced:Si51→0 or
Si50→1. This change~damage! can modify the state of one
or more units. Let us consider the unitSi

j After one update,
this unit will be in stateSi

j51 with probabilityp ~as defined
l-

e

-

le

l
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previously! and a change inSi will modify Si
j towards

Si
j51 with probability 12p. The complementary case i

trivially obtained. So, taking into account both cases,
probability of change in Si

j is P(Si
j50→1

~Si
j51→0)52p(12p). If all outputs are considered~we

have, on average,^K& outputs!, at least one change will oc
cur if ^K&2p(12p)>1, which leads to the critical condition

^K&5
1

2p~12p!
, ~7!

which is the same as before, though now just a simple pro
bilistic argument has been used.

Our second example involves a network where now
units can take a wider set ofS integer values, i.e.,Si
PS[$0,1, . . . ,S21%. For this case, we consider a mea
connectivity^K& and a given distribution of probability fo
our states.

For simplicity, let us assume thatp5P@L i(S)50# and
the other states have the same probability, i.e.,p(S
Þ0)5$12P@L i(S)51#%/(S21). For a mean connectivity
^K&, it can be shown that the Derrida approximation lea
after some algebra, to the overlap equation

a12~ t11!5a12
^K&~ t !1Fp21 ~12p!2

S21 G@12a12
^K&~ t !# ~8!

and the marginal stability condition gives the critical poi
relation

pc5
1

SF12S 12
S

K
@~22S!K1S21# D 1/2G , ~9!

which defines a critical surface in the (S,K) parameter space
~Fig. 2!. ForS52 ~Boolean net!, Eq. ~9! leads to

p5
1

2
1
1

2
A12

2

K
~10!

and is the corresponding critical condition given by Eq.~7!.
Now let us consider our approach. Let us take a unitSi

PS and let us switch its state. Remember th

FIG. 1. Tree structure used in our annealed approximation.
unit Si is modified and this change can~or cannot! propagate
through some of thêK& units that receive inputs fromSi . This
process is repeated using the annealed approach described
text. Eventually, a single change can percolate through the w
tree.
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P(Sj50)5p and P(SjPS2$0%)5(12p)/(S21). A
change in Si will modify a given Si

j with probability
(12p)@12(12p)#/(S21) if Si

j50 and with probability
(12p)2(S22)/(S21) if Si

jPS2$0%. So no changes will
occur if

G*[^K&F2p~12p!1
S22

S21
~12p!2G,1 ~11!

and the critical point will be given byG*51. It can be easily
shown that this result is the same as the one given by Eq.~9!.

Now let us consider a third example: coupled RB
~CRBN!. Though this is a more sophisticated system, so
types of CRBNs have been used as models of coop
tive games@1#. Here a simpler dynamics is considere
Let us take a couple of RBNs with connectivitiesK1 and
K2, respectively. Let S15„S1

1(t), . . . ,SN
1 (t)… and

S25„S1
2(t), . . . ,SN

2 (t)… be the states of such nets att. Then
the dynamics is defined as

Si
1~ t11!5L i

1
„Si1~ t !, . . . ,SiK1

~ t !… ~12!

~i.e., we update the first net once!. Then we useS1(t11) as
input for S2, i.e., S2(t11)5S1(t11), and then the secon
net is updated

Si
2~ t12!5L i

2
„Si1~ t11!, . . . ,SiK1

~ t11!… ~13!

and we use this state as input forS1. Then this rule is applied
again.

The DAA leads, for this system, to the following couple
equations for the normalized Hamming distance:

Dt115
1
2 @12~12Dt!

K1#, ~14a!

Dt125
1
2 @12~12Dt11!

K2#. ~14b!

FIG. 2. Phase space of CRBNs. The two phases are obse
separated by the critical condition given by Eq.~19!. Three numeri-
cal examples are also shown corresponding to three different s
tions. Here there arem54 coupled nets, withN540 units. We have
three typical behaviors:~a! chaotic,~b! critical, and~c! frozen. The
connectivities of each net are indicated.
e
a-
.

Using the compositionDt125Dt11(Dt), where again
D*50 is the fixed point, we get the marginal stability co
dition

S ]Dt12

]Dt
D
D*50

5
1

4
K1K251, ~15!

which leads to the critical pointK1K254.
This development is easily extended to a set ofm coupled

nets, with connectivitiesK1 , . . . ,Km ~againD*50 is a fixed
point!. Let us assume that, form21 nets, we have

S ]Dt1m21

]Dt
D
D*50

5
1

2m21)
i51

m21

Ki
m21 , ~16!

then, form nets we get

S ]Dt1m

]Dt
D
D*50

5S ]Dt1m

]Dt1m21

]Dt1m21

]Dt
D
D*50

5
1

Km

1

2m21)
i51

m

Ki
m , ~17!

i.e., we have a general result

S ]Dt1m

]Dt
D
D*50

5
1

2m)i51

m

Ki
m ~18!

so the critical point form coupled nets is simply

)
i51

m

Ki52m. ~19!

This result can be extended to nets with a distribution
biases$pj%. The critical point is now given by

)
i51

m

Kipi~12pi !5
1

2m
. ~20!

Using our method, now we havem trees and each time
step we move from one tree to the next one. A percolat
tree in the coupled system implies percolation in each tr
This is a set of independent events~in the annealed approxi
mation! and we have stability~a frozen regime! if:

G*[2p~12p!K1•••2p~12p!Km,1, ~21!

which is, atG*51, the result of Eq.~20!. The phase space
for these coupled nets is shown in Fig. 2. We also show,
m54, three examples of the dynamics, usingN540 net-
works.

Finally, let us consider a different type of random ne
work: a discrete neural network with asymmetric conne
tions @13#. The dynamic equation is given by a standard ne
ral network equation

Si~ t11!5sgnS (
j
Ci j Sj~ t !1hD , ~22!

with i51, . . . ,N neurons andSiP$0,1%. Hereh is a given
threshold and each neuron receives exactlyK inputs

ed,

a-



s
ic
t
el

a
no

in

g
te
a

h,

mi-
en
l re-
ng
etric

xi-
n-
-
a
dy-
on-
e
. In
en-
ce
e
the
ut
w
k if
be

-
pte,
in
p-
S.
.L.

260 55BARTOLO LUQUE AND RICARD V. SOLÉ
(1<K<N). The weigth of the connectionsCi j are randomly
choosen from a given distributionr(Ci j ). If neuron j sends
no input to neuroni , Ci j is set equal to zero. Kurten@13# has
shown that such a neural network has two different pha
~in the thermodynamic limit!: the frozen one and the chaot
one, as in our previous RBN. This network was shown
share behavioral similarities with the Kauffman mod
pointing to the existence of formal relationships.

In the analytic treatment by Kurten, he uses the form
expression for the Hamming distance in terms of a poly
mial spline function ofK order:

Dt11~K !5 (
n51

K

~21!n11SKn DanDt
n~K !, ~23!

with

an511 (
m51

n

~21!mSmn D I Km , ~24!

with n51,2, . . . ,K and I km is given by the integral

I Km~r,h!5E •••E dx1•••dxKr~x1!•••r~xK!

3Q„~xm111 . . .1xK1h!22~x11 . . .1xm!2…,

with Q(x) the Heaviside function. The phase transition po
for m51 is determined by the nonlinear map@13#

SK~h!5S ]Dt11~K !

]Dt~K ! D
D~K !50

5K@12I K1~h!#51.

Using our method, let us consider the change of a sin
unitSj (t)→2Sj (t) and let us see if such a change percola
through the tree.I K1(h) is the probability that a change in
J.
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single unit does not modify the sign of( jCi j Sj (t)1h. We
want to obtain the critical condition, which, in our approac
is directly given by the condition

K@12I K1~h!#51

whereI k1 is defined by the previous integral.
To sum up, we have used an analytic method of deter

nation of critical points in random networks. It has be
shown that the method exactly reproduces the classica
sults obtained from the DAA. Several examples, involvi
S-state random nets, coupled random nets and asymm
neural networks have been presented.

Our method is, in fact, equivalent to the Derrida appro
mation. The DAA starts from two annealed nets, with ide
tical dynamics and two initial conditions with a given Ham
ming distanceDt . The dynamical equation for such
distance is obtained, and the existence of two qualitative
namical regimes is demonstrated by depending of the c
nectivityK. If Dt goes to zero assymptotically, we are in th
frozen regime. Otherwise, we are in the chaotic domain
our method, we also start from two annealed nets with id
tical dynamics. Now, however, the Hamming distan
among them is the minimum one: only of a unit. In th
ordered regime, such a perturbation will disappear. In
chaotic one, it will be amplified. By considering the outp
neighbor trees, starting from the perturbed unit, we follo
the propagation of this change. At each tree level we chec
the distance is finite or zero. In this way, our approach can
understood in terms of percolation in Bethe’s lattice.
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