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Phase transitions in random networks: Simple analytic determination of critical points

Bartolo Luqué-? and Ricard V. Solé&?
!Complex Systems Research Group, Departament de Fisica i Enginyeria Nuclear, Universitamialige Catalunya,
Sor Eulalia d’Anzizu s/n, Campus Nord, Md B5, 08034 Barcelona, Spain
2Facultad de Matemticas, Universidad Nacional Autmma de Mexico, Mexico Distrito Federal, Mexico
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
(Received 9 July 1996

The standard method for determining the critical points in random netwsudch as Boolean netis based
on the Derrida approximation. This method leads to the critical points based on the soaraikmiedap-
proximation. In this paper, we present a very simple annealed approximation based on the study of damage
spreading when single elements are modified. Several examples are angBif#8-651X97)08401-9

PACS numbds): 05.40:+j

Complexity seem to appear, very often, close to critical(DAA). Roughly, DAA considers two random initial con-
points [1,2]. At such points, several characteristic featuresfigurations {S\V(t)},{S?)(t)} e C(N), which have a given
such as fractal structures,flhoise, and optimum informa- initial (normalized overlap
tion transfer spontaneously emerge. In this context, the ex-
istence of universal behavior close to critical points justifies 1 N
the use of very simple, generic models. At the critical bound- a(t)= NE 0SV(t)—-Ss?(1)) 2
ary, important features of large-scale phenomena are roughly =1
insensitive to the particular details of the models and are
shared by veryapparently different systems3]. [with ©(z)=1 if z=0 and zero otherwigeThen, using Eq.

A theoretical approach to a wide class of complex sys{1), we update the system once. The new ovedgjft+1)
tems was provided by the introduction of random Boolearis then computed. Then a new set of connections and Bool-
networks (RBN’s), also called Kauffman netg4—8]. First  €an functions are again chosen at random, the dynamics
introduced by Kauffman, a set oN binary elements is annealedand we follow the dynamics of the overlap in

S(t) = (Sy(1), . . . ,.Sy(t)), with time. In such a way, each time step each unit receives exactly
the same number of inputs, though the neighborhoods and
S(t)e>={0,1} specific interactions are modified.

It can be showh10,11] that it evolves following the one-
(i=1,...N), is updated by means of the the dynamic equa-dimensional nonlinear map
tions
ap(t+1)=3[1+ak(t)]. ©)
S(t+1)=Ai(S, (.S (1), ... .S (D). (1) ' BT
. . . If the normalized Hamming distand®,=1—a,,(t) is used,
Suahddynﬁlnlncal systems shﬁre sek\)/erral proper(t;es with the o fixed pointD* =0 becomes un'tstable ;éc:Z- This
so-called cellular automata modg#, but here randomness | o04 has been successfuly used in generalizations of

is introduced at several levels. Each automaton is randomll,ﬁBNS [10]. It can be extended to more complex situations
connected with exactli others that send inputs 1o it. Here (oo peloyand, after some tedious algebraic manipulations,
A; is a Boolean function also randomly choosen from a Selhe critical points are obtained.

T ,O,f all the Boolean functions V\,"th, connectivitg. An In this paper, a much more simple analytic procedure for
additional source of randomness is introduced through theg|cylating critical points in random networks will be intro-
random choice of the initial conditio§(0)={S;(0)}, taken  qyceq. It is based on a different view of how pertubations
from the setC(N) of BooleanN strings. In spite of these gnagate; starting from a change in the state of a given
random choices, RBNs exhibit a critical transition at a giveng|jement. We study the set of outputs starting from such a
connectivityK.=2. ForK<Kc, afrozen phases observed it and, using an annealed approximation, we follow the
anq forK>K, a chaotic phaseppearg7,8|. A'F the critical propagation of changes through the network.

point, a small number of attractofs-O(/N)] is observed, To be more specific, let us consider the following case.

which show high homeostatic stability.e., high stability The standard RBN is used, but involving a distribution of
against minimal perturbations in single elements or Boolearonnections (K;) (K;=1,2, ... K,,), i.e.,

functiong and low reachability among different attractors

[7,8]. These properties are clearly observed in some complex Km
systems as the genom&,6,10. 2 f(K)=1,
This critical point was first estimated through numerical Ki=1

simulations[5,6] and later analytically obtainefd 1,12 by
means of the so-called Derrida annealed approximation thand so a mean connectivity will be
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Additionally, a biasp in the sampling of Boolean functions
will be used, that is to say the probability

P=P[A(S,(1).S,(1). ... S, (1)=1].

Now the underlying dynamical system has to be general-
ized to

S(t+1)=Ai(S (1),S,(1), ... S (1) (@)
‘ FIG. 1. Tree structure used in our annealed approximation. The
(i.e., eachS receivesK;e{1,2,... Ky} inputs and the unit S, is modified and this change car cannot propagate

Boolean functions\; are randomly chosen from the set ~ through some of theK) units that receive inputs fror§; . This
process is repeated using the annealed approach described in the

m text. Eventually, a single change can percolate through the whole

F, p(N,Z). tree.

1

CK

S(Km,p,%)=
K

previously and a change ir§ will modify S{ towards
S/=1 with probability 1-p. The complementary case is
trivially obtained. So, taking into account both cases, the
probability —of change in § is P(§=0-1
K \VS=1-0)=2p(1—p). If all outputs are considere@ve
ap(t+1)=2p(1—p)| 1+ >, f(Ki)aﬁ(t) . (5)  have, on averag€K) outputs, at least one change will oc-
Ki=1 cur if (K)2p(1—p)=1, which leads to the critical condition

Here K,,e N is the maximum connectivity. Following the
DAA, it can be showr 10] that the equation for the overlap
evolution is now a more complicated one

Now the critical curve on the parameter spapgK)) is

K= 2papy “

1
{K)=G(p) 2p(1-p)’ © which is the same as before, though now just a simple proba-
bilistic argument has been used.
€ Our second example involves a network where now the
units can take a wider set db integer values, i.e.S
€3={0,1,... S—1}. For this case, we consider a mean
connectivity(K) and a given distribution of probability for
our states.

For (K)>G(p) a chaotic phase is reached and a frozen on
otherwise. Fop=1/2 it reduces to the standard RBN prob-
lem.

This result can be obtained in a different way. We con-
sider an annealed network with input connectiyik); . Ob-
viously, the output connectivityK ), will pe the samdso we For simplicity, let us assume that=P[A,(S)=0] and
have(K)o=(K);=(K)). Now let us build up a tree repre- o oiher states have the same probability, ip(S
sentation of our annealed dynamics. We start from a Smgl(%&O):{l—P[A~(S)=1]}/(S— 1). For a mean connectivity

. . . . ] .
unit S(t) € S, which sendgK) outputsto other units, which (K), it can be shown that the Derrida approximation leads,

in turn send(K) outputs to other units. Here each tree level jttar some algebra, to the overlap equation
will correspond to the network states at different time steps

(Fig. 1). This tree give us a picture of the possible paths (1-p)?
followed by a change ii§;. These paths are shown by ar- a(t+1)=af(t)+| p?+ s 1 [1-af (] (8
rows reaching a set of unitsS',S?,...,S"}. From the

point of view of graph theory, we are constructing a Cayleyand the marginal stability condition gives the critical point
tree (i.e., a Bethe lattice with coordination number relation

z=(K).
Intuitively, we know that in the frozen phase such a 1 S 2
change does not propagate through the netw@rkother Pe=3g 1- 1_R[(2_S)K+S_ 1] : ©

words, damage does not spread through the syst&nthe
chaotic phase, a change in a single unit can generate an awghich defines a critical surface in thg,K) parameter space
lanche of changes through all the net. Let us consider a give(Fig. 2). For S=2 (Boolean net Eq. (9) leads to
tree and now let us consider exactly the same tree, but with a
single change ir§; att (i.e., a nonnormalize® =1 Ham- 1 1 2
ming distanci P=5+t5V1-¢

Two possible changes can be introduc&k=1—0 or
S =0—1. This changédamage can modify the state of one and is the corresponding critical condition given by Ef.
or more units. Let us consider the udt After one update, Now let us consider our approach. Let us take a &hit
this unit will be in stateS/ =1 with probabilityp (as defined €% and let us switch its state. Remember that

(10
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Kl_Q K2_6 K= K, =3 Using the compositionD,,,=D;,1(D;), where again
R ) A D* =0 is the fixed point, we get the marginal stability con-
dition
125 &Dt+2) 1
=—K;K,=1, (15
100+ ( th D*=0 4 12
y 1 A which leads to the critical poir;K,=4.

50] Chaos This development is easily extended to a setnafoupled

] nets, with connectivitiek;, . . . K, (againD* =0 is a fixed
2% B poinf). Let us assume that, fan— 1 nets, we have

oF e

2 3 4 aD B
m ZZtim-1 m-1
( 7D, )D*O i 1H Ki (16

FIG. 2. Phase space of CRBNs. The two phases are observeﬁ]en’ form nets we get
separated by the critical condition given by Eg9). Three numeri- oD D aD
cal examples are also shown corresponding to three different situa- ( ”m) :( ttm trm-1
tions. Here there ane=4 coupled nets, wittN =40 units. We have 9Dy D* =0 Dtim-1 Dy
three typical behavior4a) chaotic,(b) critical, and(c) frozen. The

D*=0

connectivities of each net are indicated. 1 il
:K_ 1:[ , (17)
P(§=0)=p and P(Sex—{0})=(1-p)/(S—1). A
change inS will modify a given S| with probability i.e., we have a general result
(1-p)[1-(1—-p)l/(S—1) if S=0 and with probability m
(1-p)4(S—2)/(S—1) if Se=—{0}. So no changes will IDrsm lum
) i IT k! (18)
occur if D¢ | o« =
S— so the critical point form coupled nets is simply
[*=(K)|2p(1-p)+ 5= (1 p)? (11

m
H K=2m. (19)
and the critical point will be given bl/* =1. It can be easily =

shown that this result is the same as the one given bydq. This result can be extended to nets with a distribution of

Now let us consider a third example: coupled RBNs
(CRBN). Though this is a more sophisticated system, some b|ases{pj} The critical point is now given by

types of CRBNs have been used as models of coopera- m 1

tive games[1]. Here a simpler dynamics is considered. H (1—p)==m. (20)
Let us take a couple of RBNs with connectiviti&s and = 2
K,  respectively. Let S;=(Si(t),...Sk(t)) and
S,=(S3(t), ... ,Sﬁ(t)) be the states of such netstatThen
the dynamics is defined as

Using our method, now we hava trees and each time
step we move from one tree to the next one. A percolating
tree in the coupled system implies percolation in each tree.
N L This is a set of independent evelfiits the annealed approxi-
S(t+D=AS, M), .S, (1) (12 mation and we have stabilitya frozen regimgif:

*= — e — <
(i.e., we update the first net oncdhen we use;(t+1) as I =2p(1-p)Ky---2p(1=p)Kp=1, @D

input for S, i.e., Sy(t+1)=S,(t+1), and then the second which is, atI'* =1, the result of Eq(20). The phase space
net is updated for these coupled nets is shown in Fig. 2. We also show, for
m=4, three examples of the dynamics, usiNg=40 net-
St+2)=AXS (t+1),....§, (t+1)) (13  works.

! Finally, let us consider a different type of random net-
work: a discrete neural network with asymmetric connec-
tions[13]. The dynamic equation is given by a standard neu-
ral network equation

and we use this state as input . Then this rule is applied
again.

The DAA leads, for this system, to the following coupled
equations for the normalized Hamming distance:
(22)

Si(t+1):sgr‘(2 C;Si(H+h|,
Diy1=3[1—(1-Dy"4], (143 '

with i=1,... N neurons and5 €{0,1}. Hereh is a given
Dip=3[1-(1-D k2] (14b  threshold and each neuron receives exadtly inputs
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(1=K=N). The weigth of the connectior;; are randomly
choosen from a given distributign(C;;). If neuronj sends ~ want to obtain the critical condition, which, in our approach,
no input to neuror, C;; is set equal to zero. Kurtgid3] has  is directly given by the condition

shown that such a neural network has two different phases K[1— I ()]=1

(in the thermodynamic limjt the frozen one and the chaotic K1
one, as in our previous RBN. This network was shown towherel,, is defined by the previous integral.

share behavioral similarities with the Kauffman model, To sum up, we have used an analytic method of determi-
pointing to the existence of formal relationships. nation of critical points in random networks. It has been

In the analytic treatment by Kurten, he uses the formalshown that the method exactly reproduces the classical re-
expression for the Hamming distance in terms of a polynosults obtained from the DAA. Several examples, involving
mial spline function ofK order: S-state random nets, coupled random nets and asymmetric
neural networks have been presented.

Our method is, in fact, equivalent to the Derrida approxi-
mation. The DAA starts from two annealed nets, with iden-
tical dynamics and two initial conditions with a given Ham-
ming distanceD;. The dynamical equation for such a
distance is obtained, and the existence of two qualitative dy-
namical regimes is demonstrated by depending of the con-
nectivity K. If D; goes to zero assymptotically, we are in the
frozen regime. Otherwise, we are in the chaotic domain. In
our method, we also start from two annealed nets with iden-
tical dynamics. Now, however, the Hamming distance
among them is the minimum one: only of a unit. In the
ordered regime, such a perturbation will disappear. In the
chaotic one, it will be amplified. By considering the output
neighbor trees, starting from the perturbed unit, we follow
the propagation of this change. At each tree level we check if

with © (x) the Heaviside function. The phase transition pointth€ distance is finite or zero. In this way, our approach can be
for m=1 is determined by the nonlinear mits3] understood in terms of percolation in Bethe’s lattice.

D4 1(K)
dD(K)

single unit does not modify the sign &f;C;; S;(t) +h. We

K K
Dt+1<K)::;§a<-—1>V+l

NENH(S]

(23
with

ay=1+mZ=1 (—1)m(T)le, (24)

with v=1,2,... K andl,, is given by the integral

IKm(Pah):f "'fXm"'dXKP(Xl)”'p(XK)

XO((Xpsqt - X+ 2= (X4 ... +X7)?),
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